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Calculation of strain distributions at the edge of 
strained-layer structures 

D A Faux? and J HaighS 
t Physics Department, University of Surrey, Guildford GU2 5XH, UK 
$ British Telecom Research Laboratories, Martlesham Heath, Ipswich IP5 7RE,  UK 

Received 27 June 1990 

Abstract. A method for calculating stress/strain distributions in structures containing one 
or more strained layers is presented. The theory, which is based on that presented by Treacy 
etal ,  is applied to the mesa laser structure containing either a single 3.5 nm strained layer or 
four evenlyspaced3.5 nmstrained layersofIno ,Ga, ,As grown on InGaAsP(1attice matched 
to InP). The theory includes the anisotropy of elastic constants in full. Cases of structures 
containing four strained layers are examined where the separation between the centre of the 
layers is 7.0 nm, 10.0 nm and 16.5 nm. The maximum shear strain in the case of the single 
layer is found to occur at the layer/barrier interface, close to the edge of the sample. This is, 
therefore, the region where dislocations are likely to nucleate. The shear strain is about 
1 .3% for the mesa structure which has a mismatch of 0.009. The presence of four closely 
spaced strained layers does not significantly affect the magnitude of the shear strain in the 
region of its maximum. Both the in-plane and perpendicular components of the strain, E,, ,  

and E,, respectively, show relaxation at the edge of the structure with the largest relaxation 
occurring close to, but not at, the edge. For the case of four strained layers, each layer has a 
strain distribution similar to that for the single layer, but, for layer-to-layer separations of 
10.0 nm and 7.0 nm, the material between the layers becomes significantly strained near the 
edge of the sample. At  a layer separation of 16.5 nm the strain distributions in each layer are 
nearly independent of their neighbours. If the elastic constants are assumed to be isotropic, 
the results differ only slightly (less than 6%)  from those obtained from the full anisotropic 
calculation. For the isotropic case, the maximum shear strain for a strained layer of Poisson’s 
ratio U and mismatchfisfound to be0.68f(l + v) / ( l  - v). The minimum value of the strain 
relaxation perpendicular to the plane of the layer, E,,, isf(O.10 - 0.82v)(1 + v) / ( l  - v )  
while the maximum value of the in-plane strain relaxation, E ~ ~ ,  isf(0.90 - 1.19v)(l + v)/ 
(1 - v). 

1. Introduction 

The ability to grow high-quality strained-layer semiconductor structures has led to a new 
class of electronic and optoelectronic devices (Osbourn 1982, O’Reilly 1989). The biaxial 
strain, which is usually accommodated elastically within the strained layer, modifies the 
band structure and hence the electronic properties of the device. Careful control of the 
composition (and therefore the strain) enables devices with appropriate electronic 
properties to be uniquely tailored. Although the strain in the bulk of a structure can be 
deduced from the composition of the materials (provided these are accurately known), 
its value at the edge of the structure can be quite different because the strain is able to 
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relax at the free surface. It is the calculation of the stress/strain distribution at the edge 
of strained-layer structure that is the focus of the present paper. 

There is ample evidence that strain relaxation occurs at the edge of structures 
containing strained layers (Auret et a1 1979, Treacy et a1 1985, Gibson et a1 1985, 
Bangert et af 1989a, b). The bending of the diffraction contrast in transmission electron 
microscopy (TEM) provides a sensitive probe of the relaxation process. In fact, previous 
calculations have been geared towards the interests of electon microscopists because 
the thin samples required for their experiments make it necessary to have a detailed 
knowledge of the strain relaxation effects near free surfaces. Auret et a1 (1979), for 
example, combined a simple numerical strain calculation with the dynamical theory of 
strain contrast and obtained excellent agreement with experimental diffraction contrasts 
from their InGaAs/GaAs samples. They suggested that measurements of strain relax- 
ation close to free surfaces could lead to accurate determination of the indium con- 
centration in the strained layer. The calculations of Treacy and co-workers (Treacy et a1 
1985, Gibson et a1 1985, Treacy and Gibson 1986) are particularly noteworthy and the 
theory presented in this paper expands on their work. They demonstrate that an analysis 
of strain relaxation in thin samples is essential to the interpretation of TEM images. More 
recently, results from TEM diffraction contrasts on wedge samples have been compared to 
3~ strain calculations obtained using finite-element techniques (Bangert et a1 1989a, b). 
Again, good qualitative agreement between experiment and theory has been obtained. 

There are additional reasons for which a knowledge of the strain distribution at the 
edge of strained structures is important. Both during the growth of the structure and 
during device fabrication the strained layers are exposed at free surfaces. Edge regions 
have been shown to be the source of dislocations in some device structures (Sim et a1 
1988). In the present paper it is demonstrated that the relaxation of the strained layer at 
a free surface introduces regions of shear strain which may be the source of these 
dislocations. Other questions also remain to be resolved. For instance, the extent to 
which one strained layer influences the strain distribution in a neighbouring layer is of 
technological importance and is addressed here for the first time. 

We focus our attention on the mesa laser structure studied by Tothill et a1 (1990) 
although the results obtained are of general significance for a wide variety of strained- 
layer structures. The theory is presented in section 2 and the results, both for a single 
strained layer and for four strained layers, are presented in section 3. Finally, the 
conclusions may be found in section 4. 

2. Theory 

A typical mesa structure is shown in figure 1. The z dimension of the structure is large 
compared to either the x or the y dimension and so it is only necessary to examine the 
2~ slice as indicated in figure 1. The mesa structure examined by Tothill et a1 (1990) 
contains four strained layers of Ino,,Gao,3As grown on InGaAsP (lattice matched to InP) 
with a fractional lattice mismatchfis 0.009. This structure is illustrated in the inset of 
figure 1. The 2~ slice is shown in figure 2 and contains a single strained layer (rather than 
four as in the mesa structure) with the y axis in the plane of the layer and the x 
axis parallel to the growth direction. The important dimensions are a ,  the layer half- 
thickness, c ,  the half-thickness in the y direction and I ,  the half-thickness in the x 
direction. Occasionally it is convenient to refer to the full layer thickness w ,  where 
w = 2a. 
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In(70%)GaAs 

33.5nm InGaAsP 

Figure 2. A schematic diagram of the ZD slice 
through the mesa structure. This section contains 

Figure 1. A schematic diagram of the mesa struc- 
ture studied by Tothill et a/ (1990). Calculations 
are performed for the 2D slice indicated. The mesa a single strained layer. The biaxial strain within 
structure consists of four strained layers of the layer is equivalent to a stress of magnitude q 
Inn ,Can As in InGaAsP barriers lattice matched acting in they and z directions. 
to InP. 

The analysis which follows assumes that the materials are continuous, deform elas- 
tically and that plane-strain conditions exist. The condition of plane strain is equivalent 
to an infinite thickness in the z direction. This is an appropriate approximation for the 
mesa structure where the z dimension is several orders of magnitude larger than the 
thicknesses 2c or 21. Plane-strain conditions ensure that all displacements are confined 
to the x-y plane with zero displacement in the z direction. The x ,  y and z axes are 
assumed to refer to the crystallographic [ lOO] ,  [OlO]  and [OOl]  directions respectively. 
For simplicity it is assumed that the elastic constants have the same values for both 
the layer and barrier materials (although this is not a restriction on the theory) and 
correspond to those for InAs. We also assume that strain relaxation due to the presence 
of dislocations is negligible (the layer is below its critical thickness) and that com- 
positional (and hence strain) fluctuations may be neglected. Within the framework of 
these assumptions, expressions for the stress and strain components may be derived. 

First, however, the value of the strain in the bulk of a strained layer, away from any 
free surface, is discussed. The strain at the centre of a strained layer in the in-plane ( y  
and z )  directions is simply equal to -f, where f is the fractional lattice mismatch 
between the layer and the barrier, and the negative sign indicates that the layer is under 
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compression. Perpendicular to the plane (in the x direction) the strain is easily shown 
via Hooke’s laws to equal 2vf/(l - v), where the Poisson’s ratio v is the value for the 
[loo] crystallographic directions and is equal to c12/(cll + cI2). For the case of InAs, 
the elastic constants are cll  = 86.5 GN m-2, c12 = 48.5 GN m-’ and c44 = 39.6 GN m-2 
(Reifenberger et a1 1969). 

The strain relaxation at free surfaces may now be calculated. The derivation outlined 
below is based on that presented by Timoshenko and Goodier (1970) and Treacy and 
Gibson (1986). 2~ stress/strain problems require the determination of the Airy stress 
function rp , which satisfies the following relation, 

a4q /dx4  + B a4rp/ax2 ay2 + a4rp/dy4 = 0 (1) 

a, = a2rp’/ay2 aYY = a2rp/ax2 ax, = -a2cp/axay. (2) 

where the familiar stress components are related to rp by the simple relations 

The stresses a,,, ay, and oxy are the x component, y component and shear stress in the 
x-y plane respectively. In some texts the notation ox, ay and zxy are used for these 
components but as the following treatment follows that of Treacy and Gibson, we retain 
their notation, If the material is isotropic, the quantity B in equation (1) is equal to 2. 
B is related to the anisotropy coefficient A which is in turn related to the elastic con- 
stants of the material. 

B = 2[A(C,l + 2c12) - C121/(Cll  + c12) 

A = (c11 - c12)/2c44. 

(3) 

(4) 
A is equal to 1 for an isotropic material and for InAs the value of A is 0.48. 

It is now necessary to determine rp for the single strained layer illustrated in figure 
2. The elastic strain contained within the layer is equivalent to a stress of magnitude q 
acting perpendicular to the surface. The stress q ,  if applied as a compressive stress in the 
y and z directions to a relaxed isolated layer (no barriers), would introduce strains of -f 
in the y and z directions and 2vf/( l  - v) in the x direction. The applied stress q is 
therefore easily evaluated from Hooke’s laws (see equation (14)) by placing E,, and E,, 

equal tof,  a,, and ozz equal to q and a,, equal to 0. The final expression for q is 

4 = Ef/U - v) ( 5 )  

where E ,  the Young’s modulus in the [loo] direction, is equal to (cI1 - c12)(c11 + 2c12)/ 
(cll + c12). In order to evaluate the stress components, we note that the stress ay, across 
the surface at y = +c (or y = -c) has a constant value q when -a < x < a and is zero 
otherwise. It is possible to represent this step function by a Fourier series and so a 
reasonable form for the Airy stress function is 

where cosines are chosen because the load is symmetric about x = 0. This expression for 
cp is appropriate for problems with specified boundary conditions on the faces y = k c  
but the choice of q given in equation (6) cannot include boundary conditions which may 
need to be specified on the faces x = 21. This would pose a problem if 1 was of the order 
of a ,  but for the mesa structure under consideration here the value of 1 is much larger 
than a and this choice of rp is therefore appropriate. 
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The y dependence of Q, is contained within the function fm( y) where the subscript 
indicates that the function also depends on the summation index m. This contribution 
has been determined by Treacy and Gibson (1986) and the full method of evaluation 
may be followed in their appendix A.  The final expressions for a,,, U,, and a,, obtained 
here differ slightly due to the presence of the cosine Fourier series rather than the simple 
sine function used by Treacy and Gibson. Note also that there are two small errors in 
the appendix A of Treacy and Gibson. An i should precede the second term in the 
equation ( A l l )  and a factor ( 4 2 )  should be inserted in equation (A13c). The final 
expressions are 

1. 

ax, = -2 I: A,, COS C U X [ ~ C ( C  - 0)  - yc(E + F ) ] / R  
ni = 1 

X 

ay, = + 2  I: A ,  COS ax[pc(C - D) + yc(E + F ) ] / R  - A0 
m = l  

2 

U,, = -2 2 A ,  sin a x [ a c ( ~  - H ) I / R  
m = l  

(7)  

C = cosh pc sin yc cosh py cos yy 

D = sinh pc cos yc sinh py sin yy 

E = cosh pc sin yc sinh py sin yy 

F = sinh pc cos yc cosh py cos yy 

G = cosh pc sin yc sinh py cos yy 

H = sinh pc cos yc cosh py sin yy 

R = pc sin 2yc + yc sinh 2pc 

y = ia(2 - B)’i2 

and B has been defined earlier. The coefficients A ,  are easily obtained from standard 
Fourier analysis and are 

p = 2 4 2  + B)l’2 

a = mn/l 

A ,  = 29 sin aa/al 

A. = qa/l. 

m#O 

The summations in equations (7)-(9) are now taken from m = 1 to CQ with the m = 0 
contribution treated separately. For a,, and a,, this contribution is zero, whilst for a,, 
this contribution is equal to -gal l .  Placing y = k c  in expressions (8) and (9) reduces U, 
to the simple Fourier series expression for the step function, while oxy is equal to 6 
as required by the boundary conditions on the upper and lower faces. For ease of 
computation, expressions (7)-(9) simplify greatly when a y  (and hence also ac) is large 
(greater than about 10). The simplified expressions are 

z 

U,, = - E A ,  COS ax e-P(c-y)(pU/y - V I  

ayy = + I: A ,  cos a x  e-@(c-Y)(pU/y + V I  - qa/l 

m = l  
z 

m= 1 

X 

oxy = - 2 A ,  sin a x  e-P(c-Y) auIY 
m = l  

U = sin yc cos yy - cos yc sin yy V = sin yc sin yy + cos yc cos yy. 
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The three stress components are calculated using equations (6)-(13) with equations 
(11)-(13) used for values of m for which ay is greater than 10. 

The strain components are determined using the Hooke’s law relations, 

E, = [ o x x  - v @ y y  + az,)l/E (14) 
with two similar expressions involving and E ~ , .  These relations are used to obtain 
expressions for the strain components under plane-strain conditions. There is no strain 
relaxation in the z direction, as discussed earlier, and so E,, is set equal to 0. Eliminating 
uzz yields 

E,  = [(1 - v2)uXx - ~ ( l  + ~ ) u , , ] / E  
E y y  = [ ( l  - v2)uyy - v(l  + v)u,]/E. 

Exy = 2(1 + v)a,/E. 

(15) 

(16) 

(17) 

Finally, it is noted that the shear strain is related directly to uxy by 

It is important to appreciate that equations (15)-( 17) determine the strain relaxation. 
If two points within the material (arbitrarily close) do not move relative to each other 
under the action of the stress q ,  then the calculated value of the strain relaxation is equal 
to zero. A positive value of the strain relaxation indicates an expansion of the material 
and a negative value indicates contraction of the material relative to the starting con- 
figuration illustrated in figure 2. If, for instance, the calculation leads to a value +fof 

at some point in the layer, the layer has expanded by a fraction f in the in-plane 
direction at this specific point and has thus relaxed back to its preferred atomic spacing. 
The true strain in the material may be obtained by adding the initial conditions: that is 
by adding -fto the calculated values of E ~ ,  in the layer and by adding 2vf/(l - v )  to the 
calculated values of E,*, also within the layer. Of course, in the barrier, the initial 
conditions are of zero strain and so the calculated strain relaxation using equations (15)- 
(17) is equal to the true strain. We discuss the results in terms of strain relaxation in the 
following section and make reference to the true strain as appropriate. We also note 
that, if the barriers are removed from figure 2 to leave the isolated layer, the applied 
stress q would introduce an in-plane strain of f (  1 + v )  and not f. This is because the 
layer is still subject to plane strain conditions and therefore cannot relax in the z direction. 

The equations produced so far include anisotropic effects through the parameter B 
which is related to the anisotropy coefficient A (equations (3) and (4)). Many semi- 
conductor materials have an anisotropy coefficient approximately equal to 0.5 indicat- 
ing, for instance, that the Young’s Modulus E is roughly twice as large in the [111] 
direction as it is in the [loo] direction. Despite the large variation in E ,  it will be shown 
in section 3 that the results are not very sensitive to this anisotropy. Expressions for the 
strain components may be obtained for the isotropic case by setting B equal to 2, and 
therefore y = 0 and @ = a. Equations (7)-(9) reduce to, 

7: 

uxx = -2 2 Am COS CY.X[C’ - D’ - F’]/R’ 

uyy = +2 2 A m  COS CYX[C’ - D’ + F‘]/R’ - A0 

uxy = -2 2 A ,  sin  ax[^' - H’I /R’  

(18) 

(19) 

(20) 

m = l  
r 

m = l  
CE 

m = l  
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C’ = EC cosh ac cosh ay 

D’ = ay sinh ac sinh ay 

F‘ = sinh ac cosh ay 

G’ = ac cosh ac sinh ay 

H’ = a y  sinh ac cosh ay 

R’ = 2ac + sinh 2ac. 

Reduced expressions similar to (1 1)-( 13) for large values of m may easily be determined 
from the above equations. 

Using the procedure described above, a value of the stress at any point due to the 
presence of a single strained layer may be calculated. In order to evaluate the total stress 
at a point due to an arbitrary number of strained layers, we invoke the principle 
of superposition. This principle states that, provided that the displacements do not 
significantly affect the action of any forces, the total stress at a point is simply the sum 
of the individual stresses. Thus, within the framework of this assumption, we are able 
to estimate the stress/strain distribution due to an arbitrary number of strained layers 
by simply summing the stresses at a point which arise due to each layer. 

3. Results 

All results are obtained with cI l  = 86.5 GN m-*, c12 = 48.5 GN m-2 and cd4 = 
39.6GNm-* which leads to a value of the Young’s modulus of 51.7GNm-* and a 
Poisson’s ratio v of 0.36 for the [loo] crystallographic directions. These are the values 
for InAs (Reifenberger et a1 1969). The values of c and I are fixed at 0.5 pm. The results 
are not sensitive to the values of c and 1 as both parameters are much larger than the 
layer width. The layer half-width a is equal to 1.75 nm and the mismatchfis 0.009. These 
values correspond to those of Tothill et a1 (1990). Calculations are performed using 
equations (6)-(13), (15)-(17) and include anisotropic effects in full. The results for the 
single strained layer and for the combination of four strained layers are considered 
separately in the following subsections. 

3.1. The single strained layer 

The shear strain distribution is presented as a contour plot in figure 3. It is seen that 
the maximum shear strain occurs at the layer-barrier boundary close to the surface. 
Dislocations can form as a consequence of shear forces in the material which encourage 
atomic layers to slide over each other. These results therefore suggest that the most 
likely position for dislocations to form is in the region at the layer/barrier interface close 
to the surface of the structure. The maximum value of the shear strain is 1.3% in the 
present system. If the critical shear strain for this material is assumed to be about 5 % ,  
this value would be exceeded at the edge of the structure at mismatches of about 3.5% 
and above. 

The shearing action can be seen in figure 4 which illustrates the displacement of the 
material near the free surface. Note that the squares represent a region of material that 
has become distorted due to strain relaxation at the edge of the structure and do not 
represent atomic spacings. The most distorted (or ‘diamond-like’) portion is at the layer- 
barrier boundary near the edge. 

are presented in contour plots in figures 5 and 6. 
Recall that a positive value of E indicates that the material has stretched while a negative 
value indicates compression. In figure 5 ,  reaches a minimum in the centre of the well 

The strain components and 
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Contour Key 

Figure 3. The shear strain E,, for a single strained layer of width 3.5 nm. The diagram covers 
a region 10 nm x 10 nm. The contours indicate curves of constant strain and are labelled in 
units of lo-’ as shown in the contour key. 

Figure 4. The displacements of the material close to the edge of the structure (exaggerated 
by a factor of 20). The figure shows the distortion of squares of material due to surface 
relaxation effects. 

approximately 1.5-3 nm from the surface. This is the region where the atomic spacing 
in the x direction is closest to its relaxed value. There is, however, a region very close to 
the surface where E,, is positive, indicating that the material has stretched and therefore 
distorted even further from its relaxed atomic spacing. The ‘bulging out’ of the layer at 
the surface causes stretching in thex direction and hence an increase in The Poisson’s 
ratio effect leads to a corresponding slight reduction in the value of eyy close to the 
surface which can be seen in figure 6 .  The maximum in-plane strain is observed in 
the centre of the layer at approximately 1.2 nm from the surface. This strain is positive, 
of course, indicating that the layer has expanded close to the surface. Note also that 
there are small lobes of compression in the barrier material close to the edge of the 
structure which form in response to the bulging of the layer. 
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Contour Key 

0.001 
0,002 
0.003 
0.004 

1 Svained 
Layer 

\ i  
Barrier 

Figure 5. The strain component E,,  for a single strained layer of width 3.5 nm. The diagram 
coversaregion 10 nm X 10 nm. Thecontoursindicatelinesofconstant strainandarelabelled 
in units of as shown in the contour key 

i \ ’3 

Contour Key 

0.002 
0.003 
0.004 
0.005 
0.006 

7 0.007 
8 0.008 

Figure 6. The strain component E , ,  for a single strained layer of width 3.5 nm. The diagram 
coversaregion 10 nm X 10 nm. Thecontoursindicatelinesofconstantstrainandarelabelled 
in units of lo-’ as shown in the contour key. 

It is interesting to examine eyy in more detail. Figure 7 shows the value of eyy at the 
centre of the layer plotted as a function of the distance from the edge of the structure. 
It is clear that the most significant strain relaxation occurs from 0 to about 10 nm into 
the layer. Thereafter the decay is slow such that the value of eyy is equal to 10% and 
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0.010 I 

oow ' 
0 5 10 15 20 

Distance from Surface (nm) 

Figure 7. The strain component E , ,  at the centre of the layer plotted as a function of the 
distance from the free surface. 

5% off at distances of approximately 30 nm and 65 nm respectively. This means, for 
example, that the absolute value of the true strain in the strained layer (obtained, we 
recall, by adding the initial strain -fto the calculated value) at a distance of 30 nm from 
the surface is 0.9f, and at 65 nm from the surface the true strain is about 0.95f. For a 
layer of arbitrarywidth w these calculations show that the majority of the strain relaxation 
occurs over a distance of roughly 3w into the material. The strain is 0.9f and 0.95f at 
distances of about 9w and 18w respectively. 

It is clear from the previous discussion that only for very small samples would the 
average in-plane strain in the sample be significantly different from the mismatchf. This 
can be tested by evaluating the strain relaxation at the centre of the structure for 
different values of c. It is found, for instance, that a sample with c = 1 pm possesses an 
average strain which differs fromfby only 2.4% and a c = 10 pm sample differs by about 
1.3%. 

The influence of the anisotropy of the elastic constants on the strain relaxation may 
be assessed by evaluating the same quantities by using isotropic elastic constants. This 
involves setting B = 2 and fixing E and v to the values for the [loo] crystallographic 
directions. The stress components are evaluated using equations (18)-(20) and the strain 
relaxation components using equations (15)-( 17). There is little difference between the 
results for the isotropic case and those for the case in which the anisotropy of elastic 
constants is fully included. The values of E ~ ~ ,  for instance, differ by at most 6%. 

For the isotropic case, expressions for the maximum and minimum values of the 
strain relaxation components may be obtained for any strained layer. The maximum 
shear strain is found to be E , ~ . ~ ~ ~  = 0.68f( 1 + v)/( 1 - v). The in-plane strain relaxation, 

has a maximum value close to the edge of the structure of E ~ ~ . ~ ~ ~  = 
f(0.90 - 1.19v)(l + v)/(l - v )  and the perpendicular component of the strain has a 
minimum value of E,,,,,, = f(O.10 - 0.82v)(l + v)/(l - v). If it is assumed that 
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Contour Key 

0.002 
0.003 
0.004 
0.005 

0.007 
0,008 

Figure 8. The strain E , ,  for four strained layers ofwidth 3.5 nm separated by centre-to-centre 
distances of 16.5 nm. Only layers 1 and 2 are shown in the figure. The diagram covers a 
region 33 nm X 33 nm. The contours indicate lines of constant strain and are labelled in units 
of as shown in the contour key. 

Poisson’s ratio v is equal to f ,  these reduce further to E , ~ . ~ ~ ~  = 1.36f, 
and E ~ ~ , , ~ ~ ~  , _  = f respectively. 

= -0.35f 

3.2. Four strained layers 

The principle of superposition, as explained in section 2, permits the calculation of the 
stress/strain distributions for the case of four strained layers. Each of the four layers has 
a half-width, a ,  of 1.75 nm and the centres of the layers are separated by a distance d.  
We concentrate on the results for the in-plane strain E ~ , , .  

The results for the structure examined by Tothill et a1 (1990), where d = 16.5 nm, 
are presented in figure 8. Layers 1 and 2 of the four strained layers are shown in the 
plot-layers 3 and 4 have distribution which are simply mirror images of those shown in 
the figure. Figure 8 shows that there is virtually no transmission of strain from one layer 
to another and that each behaves essentially as a single strained layer independent of 
the others. For comparison, results ford  = 10.0 nm and d = 7.5 nm were also produced 
and these are shown in figures 9 and 10respectively. In both cases significant transmission 
of strain into the barrier material between the layers is observed. When d = 10.0 nm, 
the maximum strain in the barrier is about 0.003, or about one third the misfit strain in 
the layer. The strain distribution in the layer itself, although somewhat asymmetric, is 
not substantially different from that in figure 8. For d = 7.5 nm, where the barrier 
material is the same thickness as the well, the strain in the barrier is in excess of 0.004. 
Thus, significant strain transmission is observed between layers if d =S 3w. The magnitude 
of the shear strain at the maximum in each of the above cases does not alter significantly 
(although the distribution changes slightly away from the maximum) and so it may be 
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6 7 8  
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Barrier 

Contour Key 

0.002 
0.003 
0.004 
0.005 
0.006 

7 0.007 
0.008 

- x  

Figure 9. The strain E, ,  for four strained layers of width 3.5 nm separated by centre-to-centre 
distances of 10.0 nm. Only layers 1 and 2 are shown in the figure. The diagram covers a 
region 20 nm x 20 nm. The contours indicate lines of constant strain and are labelled in units 
of IO-’ as shown in the contour key. 

Strained 
Layer :: \ 

4 

J 
4 1  

Strained 
Layer 
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Figure 10. The strain E , ,  for four strained layers of width 3.5 nm separated by centre-to- 
centre distances of 7.0 nm. Only layers 1 and 2 are shown in the figure. The diagram covers 
a region 14 nm x 14 nm. The contours indicate lines of constant strain and are labelled in 
units of lo-’ as shown in the contour key. 

concluded that the likelihood of dislocations forming at the surface due to shear strains 
is not significantly enhanced by the presence of four wells. 
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4. Conclusions 

Calculations of strain distributions in strained-layer structures have been presented. 
The calculations are currently confined to two dimensions and we make the assumptions 
outlined in section 2. The conclusions from the investigations may be summarised as 
follows: 

(i) The maximum shear strain is at the layer-barrier interface close to the edge of the 
structure. Dislocations arising due to the presence of shear strains are most likely to 
nucleate at these points. The maximum shear strain is approximately 1.3% for the mesa 
structure. 

indicate that the strained layer relaxes at the edge of 
the structure, with the greatest relaxation in a region close to, but not at, the edge. In 
terms of the layer width w, the minimum value of E, occurs at about 0.75 w from the 
surface and the maximum value of cyy occurs at about w/3  from the surface. 

in the layer occurs over a distance of about 3w 
from the free surface. The true in-plane strain in the layer is 0.9fand 0.95fat distances 
of about 9w and 18w from the edge, respectively. 

(iv) Strain is significantly transferred to the barrier material near the edge of the 
structure if layers are separated by (centre-to-centre) distances of less than about 6w. 
The four-layer structure with the layers separated by a distance of 16.5 nm showed 
little strain in the barriers and so the layers were not significantly influenced by their 
neighbours. 

(v) The maximum value of the shear strain did not change significantly with the 
presence of neighbouring strained layers. Thus dislocations which nucleate as a conse- 
quence of shear strains are not significantly more likely to form in multilayer structures 
than in single strained-layer devices. 

(vi) If it is assumed that the elastic constants are isotropic, expressions for the 
maximum and minimum strain relaxations may be obtained. The maximum shear strain 
is found to be E , ~ . ~ ~ ~  = 0.68f(l + v)/(l - Y )  while the in-plane strain relaxation has a 
maximum value close to the edge of the structure of E ~ ~ , ~ ~ ~  = f(0.90 - 1.19v)(l + v)/ 
(1 - v )  and the perpendicular component of the strain has a minimum value of E , , , ~ , , ,  = 
f(0.10 - 0.82v)(l + v) / ( l  - Y ) .  

Finally it is noted that this type of calculation is extremely flexible within the frame- 
work of the assumptions outlined in section 2. For instance, it is possible to study the 
strain relaxation in a strained layer which has a thin capping layer of barrier material or, 
alternatively, a surface strained layer such as an oxide coating. The flexibility of the 
Fourier series treatment would also allow the investigation of a layer with arbitrary 
compositional (and hence strain) variation. In all cases, results may be obtained for an 
arbitrary number of layers according to the principle of superposition. The results are 
likely to be unreliable, however, for thin structures containing only a few atomic layers 
as the continuum approximation will be least accurate in this regime. 

(ii) The results for E,, and 

(iii) The in-plane strain relaxation 
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